The Doctor

The Undiagnosed Diseases Network: National and International

ITINERARE

Rare Disease Initiative Zurich Radiz Symposium Kinderspital Zurich

November 12, 2021

William A. Gahl, MD, PhD Director, NIH Undiagnosed Diseases Program

Acknowledgments

Director of Pediatric UDP: Cynthia Tifft, MD, PhD Director of Bioinformatics: David Adams, MD, PhD UDP Chief Neurologist: Camilo Toro, MD Support from NHGRI, the NIH Office of Rare Diseases Research, the NIH Clinical Center, and the NIH Common Fund, Office of the Director

50-100 dedicated support personnel and volunteer consultants at NIH.

Kind and collaborative patients and families!

UDP (May 19, 2008)

• Goals: To assist patients with unknown disorders reach an accurate diagnosis To discover new diseases that provide insight into human physiology and genetics

Intramural UDP Operations

- Applicants submit medical records
- Referring physician sends summary letter
- UDP Director triages submitted records
- Intramural NIH consultants review records
- UDP Director makes final disposition
- Patients/physicians receive a standard letter; advice conferred in ~25% of cases

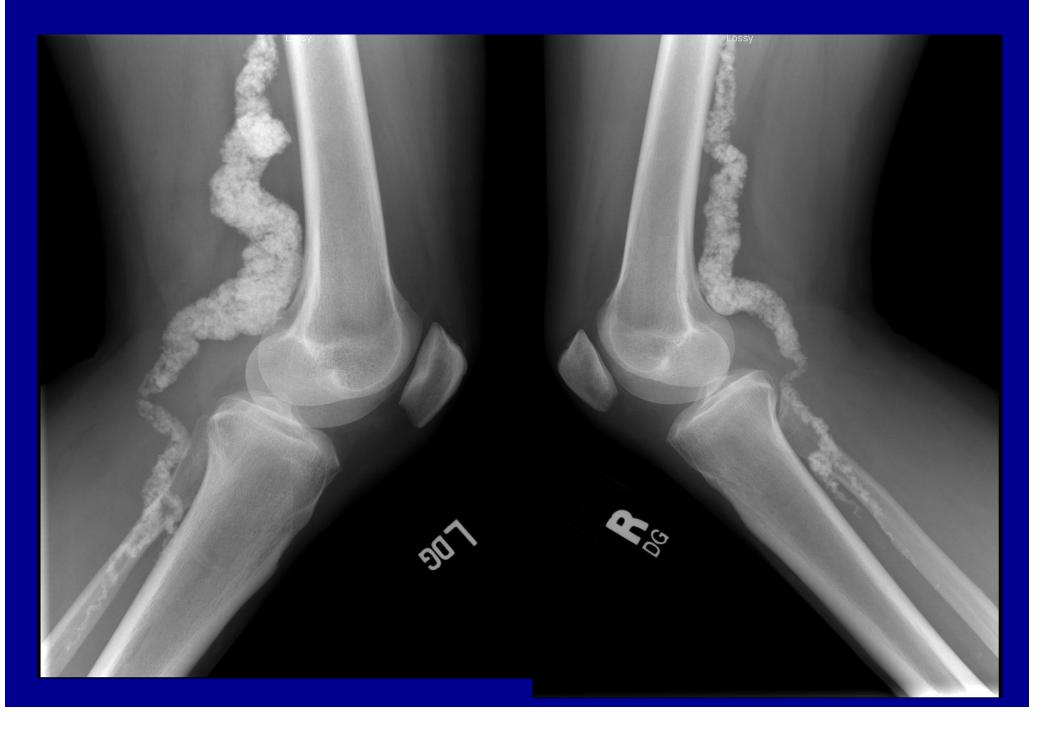
If accepted, 1-week inpatient CC admission

UDP Numbers

- Medical Records: >4000
- Admitted & Evaluated: >1500
- Children:
- Neurological:
- Some diagnosis:
- Publications

>1500 ~40% ~50% ~30% ~190

UDP Investigations


- 1. Customized (Personalized) patient phenotyping to rule out known diseases.
- 2. Genetic studies
 - a. Commercial testing
 - b. SNP arrays
 - c. Exome and genome sequencing
- 3. Functional studies (assays, model systems)



5 Adult Siblings with these Clinical Symptoms and Signs:

- Intermittent claudication of calves, thighs, buttocks
- Chronic ischemic pain of the feet
- Joint pain in the hands
- Arterial calcification of lower extremities
- Spared coronary arteries

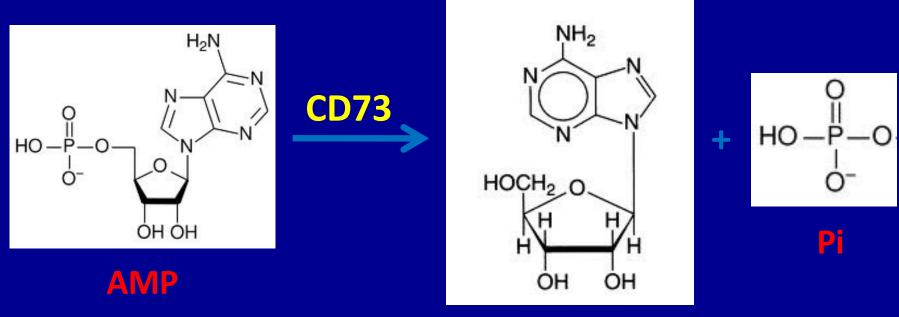
Femoral-Popliteal Artery Calcification

Parents were 3rd Cousins SNP Array: Chromosome 6q14.3-6q21

Parents

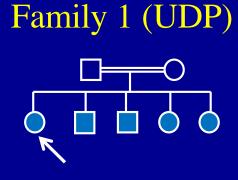
Affected

GT Samples UDP.1883 [139] (1px=61KB)						
nin fi amilia mer i ante montanti			en sladen an			
	OT Samples UDP 18	34 [140] (1px=61KB				
	GT Samples UDP.79	7 [133] (1pxl=61KB)			101	
instant allegite etc.) states and all all all				1. 11 11 11 11 11 11 11 11 11 11 11 11 1		
the second second second second second	GT Samples UDP.18	39[143] (1px=61KB)		a sectores a	. 8.5	
	GT Samples UDP.110	03 [135] (1pxl=61KB)		•		
- Carallel Contract of States and States	GT Samples UDP.11	12[136] (1pxl=61KB)			· · · · ·	
		33 [138] (1pxl=61KB)		•		
p24.3 p23 p22.3 p22.1 p21.2 p21.1 p1	2.3 p12.1 q12 q13 q14.1	q15 q16.1 q16.3 q21	q22.1 q22.31 q23.2 q23.	q24.1 q24.3 q25.1 q25.2 q25.3 q26 q	q27	
	· · · · · · · · · · · · · · · · · · ·					
43,335,005 52,583,745	31,832,485 71,081,225 80,32		98,827,445 108,076,3	35 117,324,925 21 g2.1 g2 g22.31	126,57	
pz1.01 pz1.2 pz1.1 p12.0 p1 p12.1 p11	q12 q13 q14.		410.1 410 410.5	q22.1 q22.31		

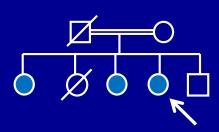

Region of Identical Homozygosity

Dr. Tom Markello

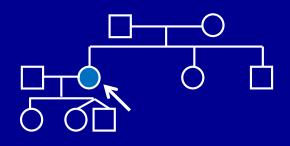
Linkage Region


- Region of homozygosity: 22.4MB
- 7977 total SNPs without a single A/B genotype in any locus
- 92 genes, about 902 exons
- No structural genes of the extracellular matrix
- One good candidate gene: *NT5E*, encoding CD73, an ecto-5'-nucleotidase

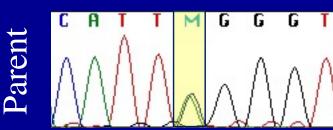
NT5E Encodes CD73

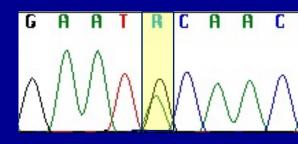


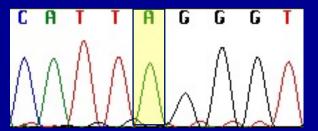
Adenosine


NT5E Sequencing Analysis

Family 2 (Kleta)

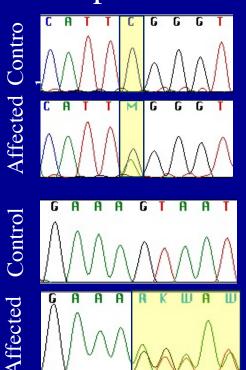


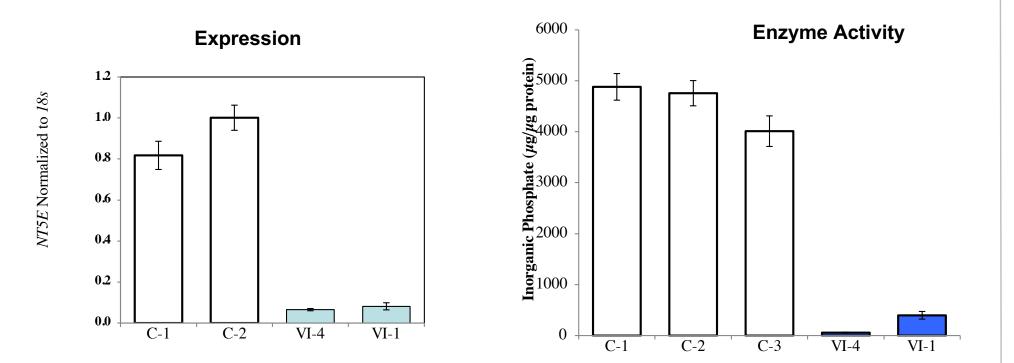

Family 3 (Nussbaum)



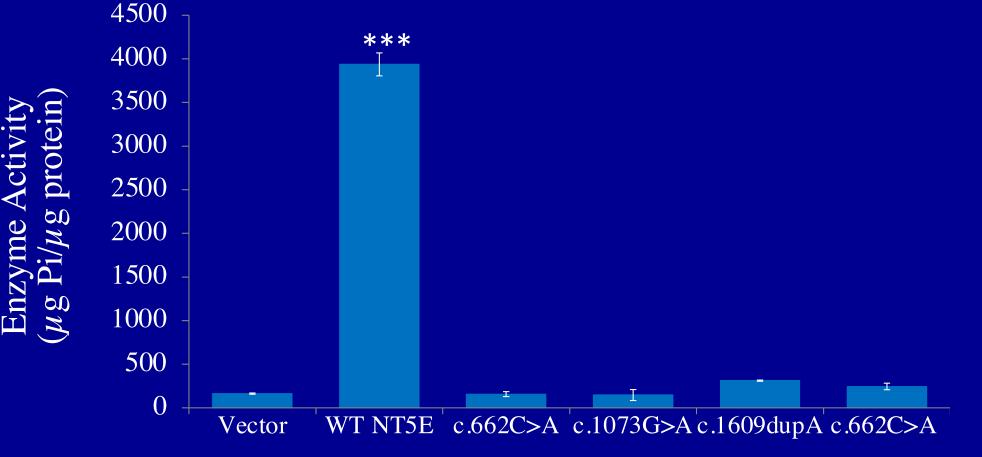
c.662C>A, S>X


c.1073G>A, C>Y c.1069dupA/c.662C>A





ffected



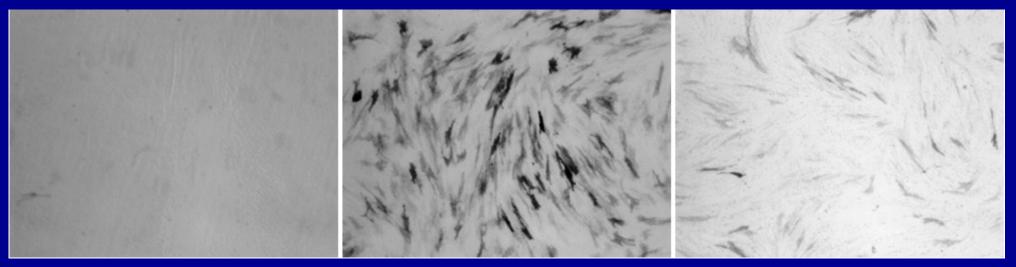
S. Ziegler

Drs. C. St. Hilaire, M. Boehm

Enzyme Activity in Mutagenized Constructs

& C.1609dupA

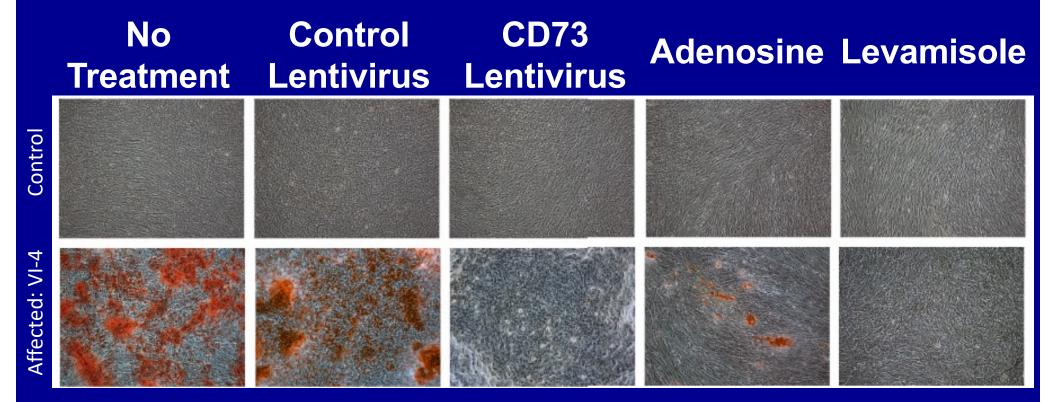
Vectors containing patient NT5E mutations transfected into HEK293 cells

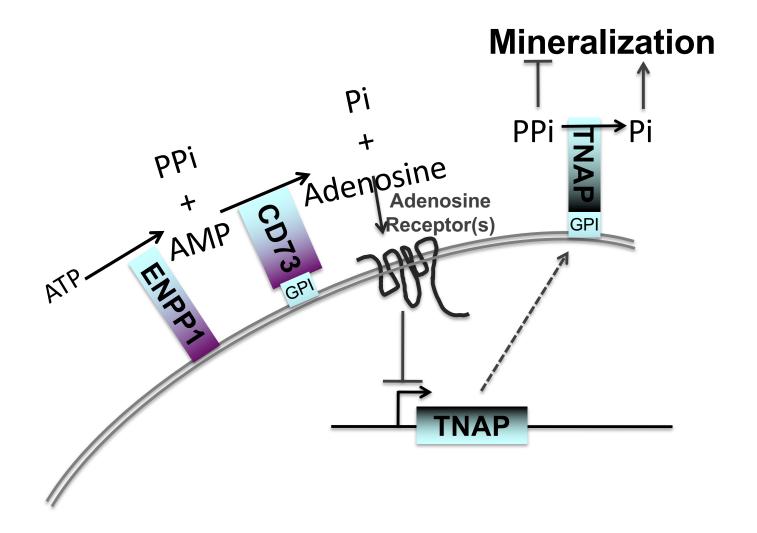

St. Hilaire C, Ziegler SG, et al. NEJM 2011.

Increased Fibroblast Staining for Alkaline Phosphatase

Control

Affected


Affected + Adenosine


Adenosine treatment of cells reduces alkaline phosphatase staining.

St. Hilaire C, Ziegler SG, et al. NEJM 2011.

Rescue of Cell Calcification by a CD73 Lentivirus, Adenosine, or an Alkaline Phosphatase Inhibitor (Levamisole)

St. Hilaire C, Ziegler SG, et al. NEJM 2011.

New Disease-Gene Associations as of 2019

1. Arterial calcifications	NT5E
2. Spastic paraplegia, spinocerebellar ataxia	AFG3L2
3. Skin/skeletal lesions, FGF23 abnormal	NRAS
4. Upregulated interferon signaling	IFIH1
5. Stroke and vasculopathy	ADA2
6. Epileptic encephalopathy	AARS
7. Ablepharon macrostomia	TWIST2
8. York Platelet Syndrome	STIM1
9. Developmental delays	CAD
10. Cirrhosis, developmental delays	PP1R15B
11. Dystonia	KMT2B
12. Neurodevelopmental disorder	EBF3
13. Mitochondrial encephalopathy	TIMM50
14. Developmental and growth delays	GARS
15. Infantile parkinsonism	WARS
16. Developmental neuroregression	UBTF
17. Saul-Wilson syndrome	COG4
18. Microcephaly, seizures, cerebral atrophy	VARS
19. Developmental delays, dysmorphisms	TRAF7
20. Delays, cardiac defects, dysmorphisms	TMEM94
21. Delays, hair & liver defects, dysmorphisms	CCDC47
22. Neuropathy, ataxia, dystonia	COX20
23. Delays, microcephaly, brittle hair & nails	CARS

Diagnoses

Rare Diagnoses

- Kearns-Sayre with cerebral folate deficiency
- Neuroaxonal dystrophy with spheroids
- Call-Fleming syndrome (vascular strokes)
- CSF tetrahydrobiopterin deficiency
- Spastic paraplegia due to SPG7 mutations
- Hereditary Spastic Paraplegia with SPG4 muts
- Stargardt's due to ABCA4 mutations
- Noonan syndrome due to PTEN mutation
- Amyotrophic lateral sclerosis with SOD1 mut
- GM1 gangliosidosis due to GLB1 mutations
- Progressive supranuclear palsy
- Joubert syndrome

Very Rare Diagnoses

- Telomerase deficiency
- IgG4 sclerosing fibrosis
- Anti-synthetase syndrome
- NOD2 mutations (father & child)
- FOXG1 mutation in 2 year old
- Dejerine-Sottas syndrome/hypertrophic neuro
- POLG1 in late-onset ataxia
- DNAH1 ciliopathy
- SLE with cerebellar ataxia and anti-GWB Abs
- Smith-Magenis syndrome with RAI1 mutation
- Pitt-Hopkins syndrome with *TCF4* mutation
- Amyloid myopathy
- Dystonia, dysarthria due to ND3 mito mut

Very Very Rare Diagnoses

- Myoclonus epilepsy without renal failure – due to SCARB2 mutations (5 in world) - Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) with *MBTPS2* mutations (6 families in world) - Neurodegeneration with brain iron due to c19orf12 mutations (20 families) - ALS-Frontotemporal Dementia due to c9orf72 expansion - Cytosolic PEPCK deficiency due to PCK1 muts - KDCT7 in two sibs with ataxia, Sz (2 families) Nephrolithiasis & 24-hydroxylase deficiency (few families)

Very Very Rare Diagnoses

 Congenital Disorder of Glycosylation type 2b (2nd and 3rd cases in world then) Adducted Thumb-Clubfoot Syndrome & CHST14 mutations (1st case in U.S.) - Spinocerebellar ataxia, myoclonic epilepsy & AFG3L2 muts (1st AR case) Autosomal Dominant Leukodystrophy & LMNB1 duplication (~10 in world then) - Adenylosuccinate lyase def. (~60 cases) - Hereditary Muscular Neuropathy type 6 due to IGHMBP2 muts (oldest pt. known) - Fatty acid 2-hydroxylase def. (~50 cases)

<u> More Diagnoses - 1</u>

- Spermine synthetase mutations with developmental delays (Snyder-Robinson)
- XP with dementia due to ERCC1 mutation
- Delays and seizures due to PIGT mutations and GPI anchor deficiency
- Stargardt syndrome, Pelger-Huet anomaly, and others with chromosome 1 isodisomy
- Movement disorder due to PLA2G6 mutations
- Osteopetrosis due to LRP5 mutation
- Mowat-Wilson syndrome due to ZEB2 mut
- Fahr's disease due to PDGFRB mutations
- Spasticity & leucodystrophy due to DARS mut
- Leucodystrophy due to AARS2 mut

<u>More Diagnoses - 2</u>

- EMARRD (Early myopathy, AReflexia, Respiratory distress, Dysphagia) due to *MEGF10* mutations
- Neurodegeneration due to BTK mutation
- Cognitive & motor decline with C19orf12 muts
- Waardenburg type 2 due to SOX10 deletion
- SLE with cerebellar ataxia and anti-GWB Abs
- GM2 gangliosidosis and Sanfilippo disease
- TEMPI syndrome with erythrocytosis muts
- Choreo-acanthocytosis due to VPS13A
- Aicardi-Goutieres due to RNASEH2B, A muts
- SPG11, NPC1, STIM1, GARS, A-T, NGLY1, MNGIE, CAV3

<u> More Diagnoses - 3</u>

- Kohlschutter-Tonz syndrome (Sz, neurological regression) due to *ROGDI* mutations
- Delays, hypotonia, strabismus due to biallelic UNC80 mutations
- CVID, aplastic anemia due to a CTLA4 mut
- Myofibrillar myopathy with de novo BAG3 mut
- X-linked intellectual disability, facial dysmorphisms due to *RLIM* mutation
- Desminopathy
- Fatal Creutzfeldt-Jacob; PrPSc/PrP27-30
- Oculodentodigital Dysplasia due to GJA1 (connexin 43) mutations

Chorea, hypomyelination-de novo TUBB4A mut

<u>More Diagnoses - 4</u>

- Spasticity, dementia, leukoencephalopathy due to homozygous POLR1C (RNA Pol III) muts
- Dementia, dystonia, brain atrophy due to chromosome 19 telomere fraying
- Microcephaly, delays, dysmorphisms with de novo SPTAN1 mutations
- Brain atrophy, delays, visual defects, seizures with an X-linked *MED12* mutation
- Hemophagocytic lymphohistiocytosis due to perforin defect
- Chorea, hypomyelination with TUBB4A mut
- Hemiplegic migraine, cerebellar ataxia, myopathy with CACNA1A mutation

<u> More Diagnoses - 5</u>

- Leukodystrophy & spheroids with CSFR1 muts
- Leucoencephalopathy, Calcifications, and Cysts due to SNORD118 mutations
- Oculodentodigital Dysplasia due to GJA1 mutation
- Dysmorphisms & delays due to TRAF7 mutation
- Microcephaly, dysmorphisms, autism spectrum due to CTNNB1 de novo mutation
- Dysmorphisms & delays due to KMT5B de novo
- Vomiting, ITP, delays due to DDX3X mutation
- Neu-Laxova Syndrome 2 due to PSAT1 muts.

<u> More Diagnoses - 6</u>

- Tremor and spasticity due to GAN de novo mutation
- Connective tissue and GI disorder due to TUBB2B de novo
- Mitochondrial disorder due to MTATP6 mutation
- Kleefstra Syndrome due to EHMT1 de novo
- Fahr's due to SLC20A2 mutations
- XMEN (X-linked immunodef, EBV infection, neoplasia due to *MAGT1* mutation
- Relapsing polychondritis
- Hereditary Spastic Paraplegia 76 & CAPN1 muts
- AR Limb-Girdle MD 2Z due to POGLUT1 muts

<u>More Diagnoses - 7</u>

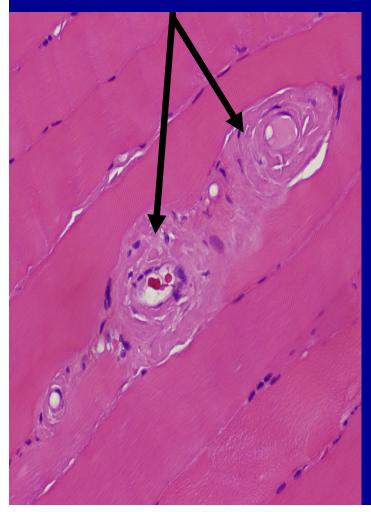
- Leigh syndrome and mitochondrial complex I deficiency due to biallelic NDUFAF6 mutations
- SMA type II-III with no SMN1 and 3 copies of SMN2
- VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) in several patients with somatic mutations in UBA1
- Dysmorphisms, hepatitis, bruising, lipodystrophy due to C1r (complement subcomponent) mutation
- Late-onset metachromatic leukodystrophy
- 15 year old boy with ataxia, dysarthria, weakness due to a de novo IRF2BPL mutation
- Sanfilippo C with only neurodegeneration

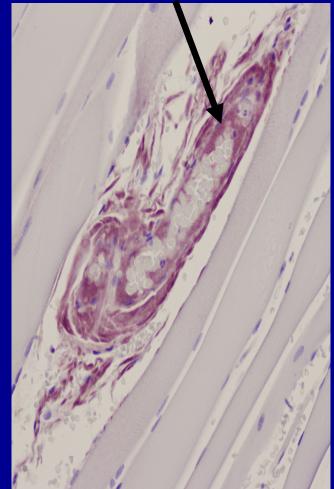
<u>More Diagnoses - 8</u>

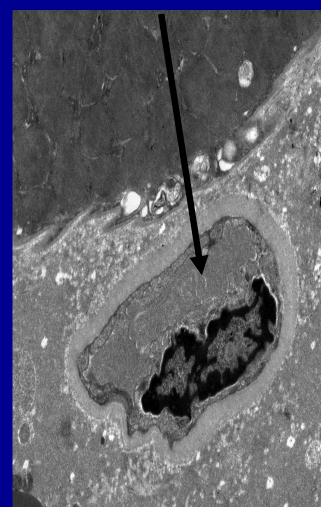
- Neurodegeneration due to bariatric surgery and methotrexate treatment causing folate deficiency
- Demyelinating peripheral neuropathy, CMT-like, due to a de novo POLR3B mutation
- Cardiac abnormalities and dysmorphisms due to iduronidase deficiency (mild Hurler syndrome)
- Sensorimotor neuropathy due to AAGGG expansions in the RFC1 gene
- Developmental and intellectual delays, ataxia, dysarthria, seizures due to a DNML1 mutation
- Autoimmune polyglandular syndrome type 2 due to a de novo BACH2 mutation

Diagnoses/Treatments

52 Year old woman with increased muscle without increased strength


- No drugs; normal growth hormone
- EMG myopathic; normal initial muscle biopsy




52 Year old woman with increased muscle: Amyloid Myopathy Bone marrow: 10% plasma cells

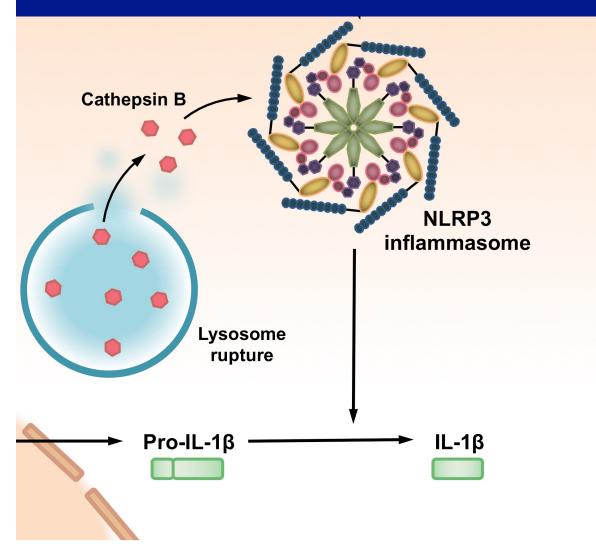
Thick vessel wall

Congo Red Stain Protein aggregate

Outcome (Dr. Irini Manoli)

- Became short of breath, fatigued.
- Referred to country's amyloidosis experts at the Mayo Clinic.
- Underwent stem cell transplant in June, 2009; slightly rocky course.
- Began feeling better within weeks.
- Gradually recovering, with normalization of muscle mass.

65 Year-old Man with Recurrent Meningitis


- Age 59 First episode of meningitis; followed by autoimmune sensorineural hearing loss
- Acute: Headache, unsteady gait
- Chronic: Uses wheelchair, memory decline
- Age 59-65 27 more episodes
- LPs: Lymphocytic pleocytosis
- Aseptic; steroid responsive
- Negative imaging & rheumatology evaluation
- Normal labs, including CRP, ESR

65 Year-old Man with Recurrent Meningitis

- Exomes: Thr915Met in NLRP3
- NLRP3: Familial cold autoinflammatory syndrome or Muckle-Wells syndrome
- Heterozygous; gain of function

Donna Novacic, MD

NLRP3 is part of the Inflammasome. A gain of function mutation will increase IL-1 activity.

We treated with the IL-1 receptor inhibitor, anakinra In 4 hours, he walked and talked normally

22 year old woman with dystonia

- Abnormal pen gripping
- Right foot deformity and twisting with gait
- Involuntary tongue movements
 - Speech
 - Swallowing
 - Nutrition
- Monoallelic KMT2B mutation
- Histone lysine methyltransferase deficiency

Dr. Manju Kurian, director of a Dystonia Clinic in London, sees KMT2B on the UDP's list of candidate disease-causing genes and calls Dr. Gahl. She has >20 dystonia patients with KMT2B mutations, is writing it up as a new disease gene, and says that several patients responded well to deep brain stimulation (DBS). She publishes a paper in Nature Genetics, including our patient, and another paper in Brain, showing the benefit of DBS.

Nature Genetics 49:223-37, 2016. Meyer E, Kurian Manju A Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia

Brain 143:3242-61, 2020 Cif L, Kurian Manju A KMT2B-related disorders; expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation

Ariane Soldatos, MD, sees a 20 year old with progressive dystonia in the UDP

3y: Toe-walking

- 4y: Hypernasal and declining speech
- 5-6y: Left foot drag; "clumsy"
- 11y: Impaired gait, wheelchair for long distances, dystonia, choreoathetoid movements of upper extremities; started oral baclofen
- 14y: Intrathecal baclofen pump; non-ambulatory
- 15y: Lost ability to write; anarthria
- 20y: Spells letters with fingers to communicate; opisthotonic posturing; IT and oral baclofen, trihexyphenidyl, tizanidine, diazepam, clonazepam

Ariane Soldatos, MD

Diagnostic testing

Negative testing for:

- DYT1 GAG946 deletion
- PKAN gene
- Mitochondrial DNA (MELAS, NARP)
- Exome sequencing
- CSF neurotransmitters
 and pterins
- Muscle biopsy: Not nemaline rod myopathy

Research genome positive for:

- De novo KMT2B mutation: c.12_24dup13: p.Ser9GlyfsX111
- 13bp duplication in exon 1 introducing a premature stop codon

Ariane Soldatos, MD

Post-Deep Brain Stimulator

Ariane Soldatos, MD

Conclusions

- *KMT2B* (DYT-28) is a relatively common cause of monogenic dystonia.
- Oromotor involvement is prominent.
- Some cases are reminiscent of NBIA.
- It is very responsive to DBS.
- <u>Sharing to find similar cases is</u> <u>critical for new gene/disease</u> <u>discovery and treatment!</u>

Sharing by the NIH UDP to find second cases of new diseases

1. UDPICS Database

- Phenotypes Phenotips ontology
- Exome sequences, variant analyses
- 2. Search UDPICS for variants in your gene.
- 3. List variants & phenotypes on web.

4. Provide limited access to UDPICS.

Expansion

The Undiagnosed Diseases Network (UDN); Phase I (2014-18)

- UDP, 7 Clinical Sites, Coordinating Center, 2 Sequencing Cores, Metabolomics Core, Model Organisms **Screening Center, Central Repository** Formal data sharing agreements Consent: PII to be shared within UDN, de-identified data with others.
- First patients: August 2015.

UDN: 8/15-4/21

- Applications
- Accepted
- Evaluated
- Diagnosed
- Patient exomes
- Patient genomes

The UDN: Phase II-2018-2022

- 11 Extramural Clinical Sites (Harvard, Vanderbilt, Duke, Baylor, Stanford, UCLA, Wash U, U. Washington, CHOP-Penn, Miami, Utah)
- Coordinating Center, Sequencing Core, Metabolomics, Model Organisms, Repository

Click "Apply" button on any UDN website for more information

http://undiagnosed.hms.harvard.edu/apply/

Worldwide Access: UDNI

Undiagnosed Diseases Network International(UDNI): White Paper for Global Actions to Meet Patient Needs *Molecular Genetics and Metabolism 116:223-5, 2015.*

Undiagnosed Diseases Network

Website: http://www.udninternational.org/

UDNI Meetings

(NIH Common Fund, Wilhelm Foundation, Local **Sponsors**)

- Rome September 2014
 Budapest June 2015
 Vienna February 2016
 Tokyo November 2016

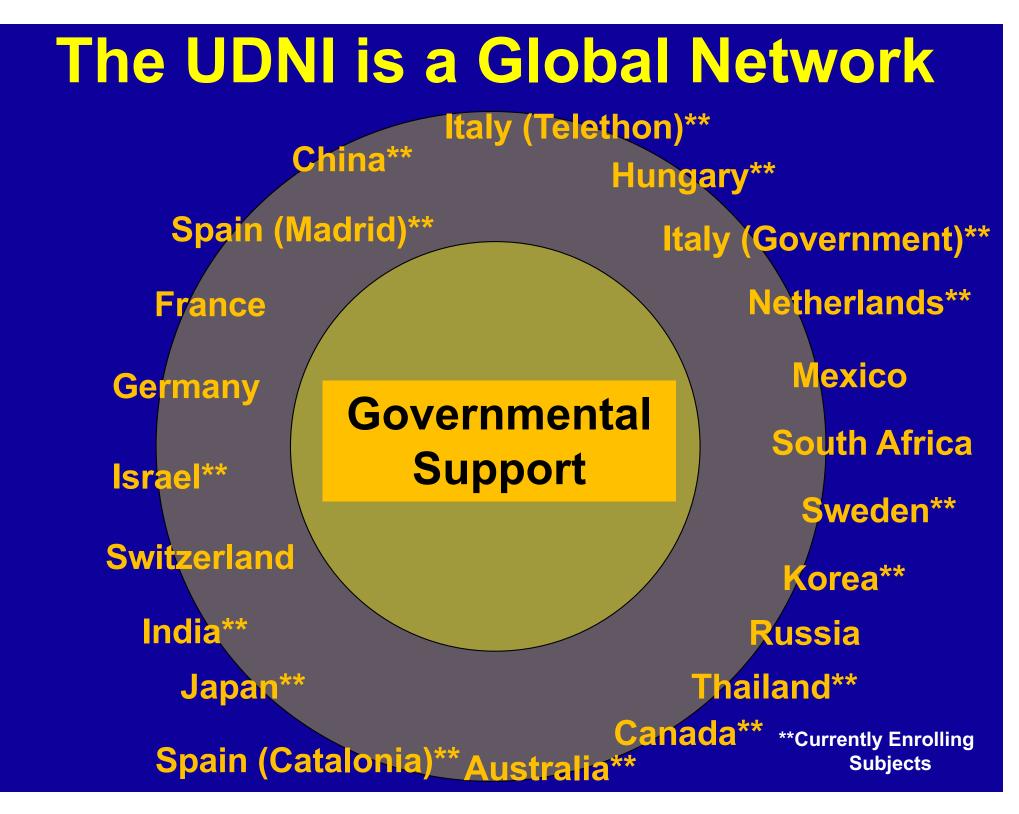
- Stockholm August 2017

- Naples June 2018
 New Delhi April 2019
 Nijmegen February 2020
 Mayo Clinic, Minnesota April 2021
 Torino, Italy Jan/Feb 2022

UDNI Charter, Committees, Data Sharing Policy, Best Practices

New UDNI Initiatives

- Website facilities for datasharing


Developing Nations Working Group

Diagnostic Working Group

Reviews case records

- Refers when possible

- Young investigator involvement

CONCLUSIONS: Rare and Undiagnosed Diseases Programs

- Require strong phenotyping of patients
- Foster new disease discovery
- Lead to insights into common diseases
- Help desperate patients
- Often require functional studies
- Sometimes do not need NGS
- Hugely benefit from data sharing
- Are needed throughout the world

